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Abstract—Intermittent behaviour (movement interspersed with
pauses) is a broad biological phenomenon which is observed
in organisms ranging from protozoans to mammals. We depict
a coordination problem that is part of the general structure
of intermittent behaviour: the adjustment-deployment dilemma.
This dilemma captures the difficult compromise between the time
spent in adjusting a response and the time used to deploy it:
the adjustment process improves fitness with time but we also
assume that such fitness decays with time (e.g. environmental
conditions change), if you spend very little time adjusting the
fitness of the action is poor, but if you spent too much time
before deployment the result is no longer valid. We provide
a mathematical model of the dilemma, general enough to be
applicable to different instances of it. An optimal solution is
then simulated and analysed, the result shows that the optimal
strategy is the one that maximizes the number of interactions
with the environment. We explore the biological significance
of such results and provide a minimal mechanism capable to
instantiate an optimal solution. We conclude with a summary
of the contributions of the present work and suggest potentially
fruitful areas of future work.

I. INTRODUCTION: INTERMITTENT BEHAVIOUR AND THE

ADJUSTMENT-DEPLOYMENT DILEMMA

Most models of biological behaviour are based on steady

state assumptions, considering that actions occur at constant

speeds. However, many organisms’ behaviour (ranging from

protozoans to mammals) is intermittent: they move, pause

briefly, and move again. These pauses last from milliseconds to

minutes, being part of a dynamical system by which organisms

adjust their behaviour to changing environments [1].

Intermittent behaviour is a widespread biological pattern.

And, despite the energetic costs of acceleration and decelera-

tion, a variety of benefits arise when pauses are alternated with

action. Intermittent bounding and undulating flight modes in

birds (which alternate periods of flapping with pauses where

wings are either extended to permit gliding or held close to the

body) save mechanical power compared to continuous flight

over a broad range of speeds [2]. A similar effect takes place

in fishes ‘burst-coast’ swimming [3]. Many species, when

chasing a prey, alternate pauses and moves to stabilize their

sensory field. Thus, while moves tend to be straight, both

pursuits of a prey and changes of direction are initiated after

pauses [4–8]. ‘Saltatory search’ in foraging animals (from

insects and lizards to mammals) minimize the search time by

alternating phases of fast motion and phases of intensive search

[9; 10].

All these examples, all along the biological spectrum, follow

a common underlying pattern that combines two mutually-

exclusive stages:

• Adjustment would be a behaviour that improves the posi-

tion of an organism or increases its possibilities of making

the most of its situation (by increasing potential energy

during flapping, augmenting perception in a pursuit to

localize the prey or moving to non-explored areas in

searches).

• Deployment would be a behaviour that takes advantage of

the possibilities generated in the previous phase (by keep

flying without further energetic costs, moving towards the

chased prey or scanning the new area).

Interestingly, the intermittency between adjustment and de-

ployment is not a mere sequencing of complete or autonomous

behavioural patterns, but poses a problem of functional coordi-

nation dynamics: how long do I have to spend gliding before

I flap again? how much time do I need to spend focusing

and pointing before I shoot? what is the best ratio between

stopping for orientation and walking in a changing environ-

ment? A correct dynamic equilibrium between adjustment and

deployment is crucial in most cases and might change under

different circumstances. We have coined the term adjustment-

deployment dilemma to name this generic characterization of

this problem. To our knowledge, no explicit theoretical, math-

ematical or simulation approach has yet explicitly addressed

it.

Despite the ubiquity of this intermittency between adjust-

ment and deployment, most computational and theoretical

models typically operate on two broad categories of modelling

frameworks: a) continuous and situated steady behaviour (e.g.

the agent approaches a light source but does not stop to rest,

orient or propel itself) or b) some kind of action selection or

decision making procedure that operates over a perceived sit-

uation and then triggers a behavioural response (without much

consideration of the temporal dimensions of the interaction).

In both frameworks the temporal structure of the adjustment-

deployment dilemma is either absent (due to abstraction and

simplification assumptions or due to the constrained scope



Concept Notation Behaviour Description

Suitability f(t)
Adjustment: f(t) = (1 − e−t/τ )

Deployment: f(t) = (e−t/ε)

Mean ability of an organism of maximizing
the achievement of its goals.

Choice γ(t)
Adjustment: γ(t) = γ0

Deployment: γ(t) = γ1

Binary exclusive choice of an organism be-
tween adjustment and deployment.

Performance p(t) p(T ) = 1
T

∫ T
0 γ(t) · f(t)dt Mean results obtained during deployment.

Optimal solution fopt(t) fopt(t) = arg max
f(t)

p(t) Behaviour that maximizes performance.

TABLE I
MINIMAL INTERMITTENT BEHAVIOUR MODEL: CONCEPTS

of the modelled behaviour) or is hidden to explicit analysis

(since the focus typically remains on global task performance

or specific mechanisms and procedures). And yet, despite

its lack of modelling attention, the adjustment-deployment

dilemma seems perfectly suited to become a widely applicable

modelling subject in theoretical biology and Artificial Life

(in analogy with other classical modelling subject like the

prisoners dilemma [11], the exploration-exploitation dilemma

[12], action-selection paradigms [13] or the salesman problem

[14]—to mention but a few).

In this paper we abstract and formalize the minimal structure

of the adjustment-deployment dilemma providing a general

model that covers different instances of it, defining the prob-

lem structure and optimal solution. The model is introduced

in section II. Section III compares its results with existing

experimental data and section IV presents a minimal structure

implementing the model and analyzes it in dynamical terms.

Finally, section V suggests some directions for future research

II. FORMALIZATION OF THE ADJUSTMENT-DEPLOYMENT

DILEMMA

In order to explore the adjustment-deployment dilemma

we have simplified the problem to its minimal form. In

general terms we have an organism adjusting its behaviour

(or solution) and then executing or deploying it. Let us take

for example the case of the copepod Eucalanus pileatus,

which displays intermittent feeding movements depending on

its developmental stage and food concentrations [15]. Feeding

rates can be affected by the proportion of time during which

a copepod moves its appendages, thus creating a feeding

current and/or swimming slowly, letting large amounts of

water pass close by or over the copepod’s sensors. Also,

the amount of water displaced is higher when appendages

movements are faster. Video recorded observations allow to

determine which strategy is triggered depending on the level

of food concentration in the environment: as levels of food

concentration decrease, copepods spent increasing percentages

of time on appendage motion, while appendage movements

frequency decreases.

In terms of our adjustment-deployment dilemma, we see

how when the environment conditions are harder (low food

concentrations), copepods spend more time in adjustment (i.e.,

moving their appendages) while deployed solution quality

decreases (lower frequency of appendage movement).

More explicitly, we have expressed the model in a series of

mathematical terms, which are seen in Table I. We introduce

them in the following subsections.

A. Suitability (fitness)

It represents the mean ability of an organism of maximizing

the achievement of its goals. The suitability (or the quality) of

a solution in an instant t is denoted by f(t) ∈ [0, 1]. We will

assume that:

1) The organism has an adjustment mechanism for im-

proving its behaviour over the environment. It is known

the functional relation between the quality of a solution

and time during adjustment. Generally, it is a nonlinear

function (the effort in obtaining better results grows

in relative terms with time), and we assume it to be

exponential, f(t) = K(1 − e−t/τ ), where τ is the

adjustment speed.

2) We assume that the solution degrades throughout time

as the environment changes. Also being exponential the

functional dependency between quality of a solution and

time, i.e., f(t) = K(e−t/ε), where ǫ stands for the

degradation rate.

B. Choice

The resolution structure of the dilemma can be captured

with a single variable denoted by γ(t) ∈ {γ0, γ1}, that is,
as the binary exclusive choice of the system over time, γ0

representing adjustment and γ1 deployment.

Now, the following equations to describe the behaviour of

the system result from the previous formalization:

• Adjustment: f(t) = 1 − e−t/τ , γ(t) = γ0

• Deployment: f(t) = e−t/ε, γ(t) = γ1

The structure of the dilemma can thus be reduced to finding

the strategy (i.e. the value of γ(t)) that obtain the better results.

C. Performance

In order to compute the quality of the obtained results by

a specific γ(t) we will define the evolution of the fitness over
time:

ḟ(t) =

{

1

τ (1 − f(t)), γ(t) = γ0

− 1

εf(t), γ(t) = γ1

(1)
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Fig. 1. Representation of the optimal strategy for different situations: a) fitness and performance functions for τ = 1, ǫ = 1, b) fitness function for
τ = 1, ǫ = 0.25, c) fitness function for for τ = 0.25, ǫ = 1. The dashed line represents the value of fopt(t).

The agent performance will be obtained just integrating the

fitness of the system during the deployment periods (the ones

in which the agent is obtaining a benefit from the world, so

we will take γ0 = 0, and γ1 = 1). Both previous functions

can be combined, obtaining the global behaviour equation:

ḟ(t) = −γ(t) ·
1

ε
f(t) + (1 − γ(t)) ·

1

τ
(1 − f(t)) (2)

And the quality of the obtained results will be defined by

the performance of the agent, p(T ), evaluated in an interval

(0, T ):

p(T ) =
1

T

∫ T

0

γ(t) · f(t)dt (3)

D. Optimal behaviour

The optimal solution of the system, fopt(t), is the one that
maximizes p(T ). Due to the difficulty of obtaining the optimal
solution of the model by analytic techniques, we used dynamic

programming techniques to solve the problem. Specifically we

have chosen to use the Bellman criteria [16]. The obtained

strategy tends (as seen in Figure 1):

• not to maximize the fitness but to reach a intermediate

value (fopt(t)) which is kept until the process is about to
end.

• to maximize the number of behavioural changes (i.e the

alternation between adjustment and deployment).

The value of the optimal behaviour fopt(t) depends on the

relation between τ and ǫ (Figure 2).
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Fig. 2. Quality of the solution for the optimal strategy fopt(t).

In a nutshell, the optimal solution to the adjustment-

deployment dilemma can be captured under the following

dictum: ‘when the environment changes, the best behaviour

is the one that maximizes the number of interactions with

the world, being the optimal fitness level determined by the

dynamics of the environment’.

III. BIOLOGICAL SIGNIFICANCE

Another interesting result of the presented model is that

fopt(t) is going to determine the amount of time that the

agent spend in adjustment and deployment. Specifically, when

execution time tends to infinity, the relative time spent in



deployment is going to be equal to the mean of the optimal

fitness value:

rdep =
1

T

∫ T

0

γ(t) ≈
1

T

∫ T

0

fopt(t) (4)

This result represents that, for example, when adaptation

is slower than environment changes, an organism will spend

more amount of time in adjustment and will develop strategies

with poorer solution quality. That is coherent with empirical

data:

• In adult viviparous lizards rdep is around 0.7 and 0.8
for general locomotion, while it is reduced to nearly 0.25
when the lizards are actively searching for prey [17]. That

is, when an agent has enough time to exploit its adjust-

ment, it can afford high fitness strategies (Figure 1.c),

while low fitness strategies will be developed by an agent

when available deployment time is smaller (Figure 1.b).

• Several studies pointed out behavioural changes of an-

imals looking for preys as the searching environment

changes. When preys are more difficult to detect or when

environments are visually more complex, the value of

rdep decrease [18–20].

The percent of the time spent in deployment varies greatly

among different organisms. As seen in [1], rdep ranges from

0.04 to 0.94 for different tasks and species. Also, according

to experimental data [10], rdep follows a binomial distribution

in foraging animals. Meaning that most foragers either spend

more time searching than moving or spend more time moving

than searching. Being very little the number of foragers that

spend similar amounts of time searching and moving. These

results can be seen in Figure 2, where, if ǫ/τ is assumed log-

uniformly distributed, in most of the cases rdep would be either

small or big, and only a little percent of the cases rdep would

have medium values.

IV. A MINIMAL MODEL-MECHANISM THAT SOLVES THE

ADJUSTMENT-DEPLOYMENT DILEMMA

Assuming the model presented before, is it possible for an

agent to implement this optimal strategy in a changing environ-

ment? And if so, what structure is necessary to implement such

behaviour coupled with the dynamics of the environment? We

sued continuous-time recurrent neural networks (CTRNNs) in

order to implement a dynamical system capable of developing

the optimal strategy.

It was found that just one neuron is able to adapt to certain

particular dynamics of the world. Moreover, the same neuron

was also able to couple to any other new dynamics without

any further training.

A. Continuous-time recurrent neural networks

CTRNNs are a good choice for proposed task because (1)

they are the simplest nonlinear, continuous dynamical neural

network model; (2) despite their simplicity, they are universal

dynamics approximators in the sense that, for any finite

interval of time, CTRNNs can approximate the trajectories of

any smooth dynamical system [21].

The general form of a CTRNN with N neurons is:

ẏi =
1

τi
(yi +

N
∑

j=1

wijσ(gj(yj + θj)) + Ii) (5)

where i = 1, 2, ..., N , y is the state of each neuron, τ is its

time constant (τ > 0 ), wij is the strength of the connection

from the jth to the ith neuron, θ is a bias term, g is a gain

term, σ(x) = 1/(1 + e−x) is the standard activation function,

and I represents a constant external input. In this case, the only
knowledge the network has about the world was the current

quality of the solution being implemented, i.e. I = Kf · f(t),
where Kf is a gain term.

One of the neurons (e.g. i = N ) was considered as the

output of the system. This output will determine the values of

γ(t), and therefore the following f(t).

γ(t) =

{

0, yN (t) ≤ 0
1, yN (t) > 0

(6)

Once the neural networks were defined, by the use of a

genetic algorithm it was found the network that develops an

optimal behaviour. The genetic algorithm tended to select with

more probability the networks that achieve a higher value of

p(T ) in a simulation.

B. Adaptation

Before the adaptation, they were defined the τ(t) and ǫ(t)
functions, which defined the dynamics of the world at each

moment. These functions will determine the value of fopt(t).
Firstly, it was tried a static situation: τ(t) = 1, ǫ(t) = 1,

fopt(t) = 0.5. Given these dynamics, the genetic algorithm

was executed for various sizes of neural networks. The result

was that even for CTRNNs with N = 1 (one single neuron),

the network was able to obtain the optimal results for the given

dynamics (Figure 3).
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Fig. 3. Fitness function f(t) for fopt(t) = 0.5 (dotted line). Response of a
single-neuron network.

C. Adaptation without learning

From now on, it was taken the single-neuron network

adapted to fopt(t) = 0.5 without any change. The objective

was to observe the response of this neuron to environments

with dynamics that have never seen by the network. The
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Fig. 4. Fitness f(t) of the resulting neuron, without any further learning, tried for different world dynamics: a) fopt(t) as a ramp function, b) fopt(t) as a
step function, c) fopt(t) as a triangle waveform and d) fopt(t) as results of defining τ(t) and ǫ(t) as sinusoidal functions.

dynamics tried consisted in defining fopt(t) as a) a ramp

function, b) a step function, c) a triangle wave and d) fopt(t)
as result of defining τ(t) and ǫ(t) as sinusoidal functions.
The result was that the neuron was able to adapt to any of

these changing dynamics obtaining an optimal performance

(i.e., with f(t) ≈ fopt(t)) as seen in Figure 4. Therefore, the

mechanism implemented for a single neuron for adapting to

a particular world dynamic (fopt(t) = 0.5) was also able to

adapt to any other smoothing changing dynamic without any

further training.

The same results were observed when the genetic algorithm

obtained in the first place a neuron adapted to any other given

dynamics different to fopt(t) = 0.5. The resulting neuron was
always able to adapt to the new changing fopt(t).

D. System behaviour

This result was achieved because of the resulting structure

of the neuron and its consequent behaviour. That behaviour

is based on the coupling between the externals (the environ-

ment) dynamics and the internal (the neuron) dynamics of

the system. The system external dynamics were represented

by the variations of the fitness function f(t), that is, ḟ(t)
(representing the effect of the agent behaviour on its own

situation in the world). Similarly, we took ẏ(t) for representing
the system internal dynamics, determined by the variations of

the internal state y(t). With the purpose of seeing intuitively

the effects of the different dynamics (ḟ(t) and ẏ(t) are quite
spiky functions), the systems dynamics were represented by

the variables ḟm(t) and ẏm(t), being the filtered moving

averages of ḟ(t) and ẏ(t).

Within these parameters the neuron behaviour could be

explained at different levels:

1) When f(t) ≃ fopt(t) (Figure 5), the neuron feedback

loop is able to compensate the output deviations. That

makes the neuron behave like an nonlinear oscillator

around fopt(t).
2) If fopt(t) has a constant value, but fitness is not at this

optimal value, i.e., f(t) ≷ fopt(t) (Figures 6.a and 6.b),
then the system tends to converge to f(t) = fopt(t). In-
ternal and external dynamics (ẏ(t) and ḟ(t)) act together
in order to adapt fitness to its optimal value.

3) In the last case, when fopt(t) is changing throughout

time (Figure 6.c), the following happens. If fopt(t)
changes, that means that the world dynamics (i.e. the

adaptation and degradation rates) are changing, therefore

ḟm(t) changes and f(t) is no longer around fopt(t).
Nevertheless, the system dynamics ẏ(t) are going to

change in reaction to the changes in ḟm(t), counteracting
them. This will recover the equilibrium of the system in

a new point, which will be f(t) = fopt(t).

As seen, the system is able to act in two different time levels.

On the first one the agent can respond to transient changes

of f(t), keeping the fitness at its optimal value alternating

adaptation and deployment. On the second time level (slower

than the first one) the agent can adapt its average fitness value

to fopt(t), expanding the adaptive opportunities of the agent.
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Fig. 5. Values of ẏ(t) and y(t) when a) f(t) = 0.5, b) f(t) = 0.25 and c) f(t) = 0.75. y(t) ≷ 0 determines if the neuron generates or executes a solution
(notice that in each case rdep = f(t)). Therefore the functions describe a case where the neuron a) generates solutions as much times as it executes them,
b) generates solutions more times than it executes them and c) generates solutions less times than it executes them.
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Fig. 6. Values of the system fitness f(t), the system external dynamics ḟm(t) and the system internal dynamics ẏm(t) for different situations. The different
situation dynamics are defined by the value of fopt(t), represented by the dashed line.



V. CONCLUSION

In this paper we have depicted an essential aspect of inter-

mittent behavior, namely the adjustment-deployment dilemma,

the dynamic interplay between the time spent on adjusting a

solution to the environment or bodily circumstances before

deploying it, and the execution time taken by the deployment

of the solution. Despite its ubiquity in biological behaviour, to

our knowledge, this is the first characterization, formalization

and modelling approach to the adjustment-deployment prob-

lem. We have formalized mathematically the structure of this

dilemma and numerically computed its optimal solution for

different values of the problem-structuring parameter which

turns out to be the ratio between speed of adjustment and speed

of the adjusted solution decay while deployment takes place.

The optimal solution to the adjustment-deployment dilemma,

for fixed ratio between increasing quality of adjustment and

decay-rate while deploying, turns out to require a compromise

with non-maximal quality and a high rate of alternation

between adjustment and deployment.

The distribution of optimal strategies over the range of

parametric values takes a sigmoidal shape, meaning that,

overall distribution of solution should show many instances

of biological behaviour where adjustment is very fast and

longer periods of deployment are present or the contrary; i.e.

long periods of adjustment followed by quick deployment.

The distribution of intermittency in animal behaviour seems

to match our model’s optimal solution distribution.

But what are the mechanisms capable to achieve the optimal

solution under changing conditions? A CTRNN composed of

a single node was shown to be capable of achieving this

optimal solution, being its input an indicator of the success

of its deployment. The results suggests that optimal solutions

to the adjustment-deployment dilemma could, in principle, be

instantiated on very simple mechanisms, if the appropriate

conditions are met, and should therefore be accessible even

to unicellular systems.

Needless to say the present model is still in need of further

development. Some of the underlying assumptions should be

relaxed and the model complexified. For instance, many cru-

cial temporal aspects of the adjustment-deployment dilemma

were left aside in this study and many of them might provide

avenues for future research. The inclusion of forced perceptual

delays, evaluation delays (the organisms need to take some

time to taste a food source, or to evaluate the outcome of

its interaction), the possibility of overlap between adjustment

and deployment, constraints on deployment duration, etc.

should be included in further development. The measurement

of fitness and quality of solution could also be enriched

by including additional cost function to deployment (energy

expenditure), adjustment (risk of being detected/hunted) or

associated with the switching between the both of them, and

a variety of spatial and embodiment constraints.

Future development should also include reference-to and

modelling-of specific examples of animal behaviour that face

the adjustment-deployment dilemma, compare the model to

existing data and include the necessary adjustments on param-

eters and, most probably, add more dimensions to the problem.

We have shown that, when faced with the adjustment-

deployment dilemma, we gain more by assuming a compro-

mise with a suboptimal quality solution and maximizing our

interactions with the environment. Is this a principle of mini-

mal cognition? The generality of the model and the robust re-

sults indicate that it should be [22]. But further work is needed

to extend and appropriately support the results developed along

this paper. Interestingly our preliminary results support the ad-

equacy of the situatedness principle that is so characteristic of

the artificial-life-route-to-artificial-intelligence: recurrent test-

ing of our solution into the environment renders betters results

than indefinitely adjusting our models of the solution. We have

also shown how very simple mechanisms can find solutions to

relatively complex problems, illustrating how a wide range of

living systems could successfully cope with domain invariant

adaptive problems like the adjustment-deployment dilemma.

Our model also brings forth the necessity to include the

temporal dimension of cognitive processes into our theoretical

framework. Speed, intermittency, decay-rates, and deployment

duration crucially matters when it comes to real-world problem

solving. We hope to have contributed with the beginning of

yet another dimension, the adjustment-deployment dilemma,

of the multidimensional structure of living behaviour.
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